Hypoxia facilitates epithelial-mesenchymal transition-mediated rectal cancer progress.

نویسندگان

  • L L Sun
  • Z Song
  • W Z Li
  • S Y Tang
چکیده

Rectal cancer is a commonly observed tumor in clinics, and epithelial-mesenchymal transition (EMT) is very important for tumor invasion and metastasis. We established a rectal cancer HCT-116 cell hypoxia model and detected cell proliferation, invasion, and EMT-related protein expression in this model, aiming to analyze the effect of hypoxia on rectal cancer cell EMT. Rectal cancer cell line HCT-116 was cultured in normoxic, hypoxic, or anaerobic environment, and hypoxia-inducible factor-1α (HIF-1α) mRNA expression was detected in the cells by real-time PCR. Cell proliferation was tested by MTT assay; cell invasion was determined by transwell assay, and HIF-1α, epithelial-cadherin, and Snail protein levels were evaluated by western blot analysis. HIF-1α mRNA level significantly increased in the anaerobic group compared to that in the normoxic and hypoxic groups (P < 0.05). HCT-116 cell proliferation in the anaerobic group was obviously higher than that in the other two groups, with the hypoxic group showing stronger proliferative ability than the normoxic group (P < 0.05). Compared to the normoxic group, the HCT-116 cells demonstrated enhanced cell invasion and migration in hypoxic and anaerobic groups. HIF-1α and Snail expressions were upregulated, whereas epithelial-cadherin expression had declined in the hypoxic and anaerobic groups, compared to those in the normal control (P < 0.05). Therefore, hypoxia promoted rectal cancer cell progress by increasing HIF-1α to induce EMT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel HIF-1α-integrin-linked kinase regulatory loop that facilitates hypoxia-induced HIF-1α expression and epithelial-mesenchymal transition in cancer cells

Here, we described a novel regulatory feedback loop in which hypoxia induces integrin-linked kinase (ILK) expression through a HIF-1α-dependent mechanism and ILK, in turn, stimulates HIF-1α expression through cell type- and cell context-dependent pathways. HIF-1α increased ILK via transcriptional activation. ILK increased HIF-1α levels by promoting mTOR-mediated translation in PC-3 and MCF-7 ce...

متن کامل

Epithelial to mesenchymal transition concept in Cancer: Review article

Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...

متن کامل

Hypoxia, Epithelial-Mesenchymal Transition, and TET-Mediated Epigenetic Changes

Tumor hypoxia is a pathophysiologic outcome of disrupted microcirculation with inadequate supply of oxygen, leading to enhanced proliferation, epithelial-mesenchymal transition (EMT), metastasis, and chemo-resistance. Epigenetic changes induced by hypoxia are well documented, and they lead to tumor progression. Recent advances show that DNA demethylation mediated by the Ten-eleven translocation...

متن کامل

Wheatgrass extract inhibits hypoxia-inducible factor-1-mediated epithelial-mesenchymal transition in A549 cells

BACKGROUND/OBJECTIVES Epithelial-mesenchymal transition (EMT) is involved in not only cancer development and metastasis but also non-cancerous conditions. Hypoxia is one of the proposed critical factors contributing to formation of chronic rhinosinusitis or nasal polyposis. Wheatgrass (Triticum aestivum) has antioxidant, anti-aging, and anti-inflammatory effects. In this study, we analyzed whet...

متن کامل

ING5 inhibits hypoxia-induced epithelial-to-mesenchymal transition in human hepatocarcinoma cells via suppression of the HIF-1α/Notch signaling pathway

Hypoxia is one of the most common and critical factors identified in the regulation of epithelial-mesenchymal transition (EMT) in cancer cells. ING5 is a member of the inhibitor of growth (ING) candidate tumor suppressor family. However, the effect of ING5 in hypoxia-mediated EMT in hepatocellular carcinoma (HCC) cells is still unclear. Therefore, in this study, we sought to investigate the eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2016